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Appendix: Proofs of Propositions

Proof of Proposition 1.

Choose any resource r.  Let Z ≡ X(nr
t/Nt)Nt+1 ≡ Xnr

tρt be the number of copies of

string kr
t, where X is the number of observations per child, nr

t/Nt is the fraction of these

observations that pertain to resource r, and Nt+1 is the number of children who survive to

become adults in period t+1.  Let z = 1 . . Z index the individual copies krz of kr
t.

 The number of digits in kr
t that match kr* is qr

t ∈ {0, 1 . . Q} and the number of

digits in krz that match kr* is qrz ∈ {0, 1 . . Q}.  The random variables qrz are iid conditional

on kr
t.  Fix the string kr

t and define the probabilities

πq(p) ≡ Pr(qrz = q kr
t; p) for all q = 0, 1 . . Q and z = 1 . . Z.

Then define

θq(p) ≡ Pr(qr
t+1 = q kr

t; p) = Pr(max{qr1 . . qrZ} = q kr
t; p)

         = Pr(qrz ≤ q for z = 1 . . Z kr
t; p) – Pr(qrz ≤ q-1 for z = 1 . . Z kr

t; p)

         = [π0(p) + . . + πq(p)]Z - [π0(p) + . . + πq-1(p)]Z

where π0(p) + . . + πq-1(p) ≡ 0 for q = 0.

We want to compute each θq(p) when X → ∞ and p → 0 such that Xp ≡ λ > 0 is

constant.  From the definition of Z we have Z(p) = λρtnr
t/p.  In what follows we drop the r

subscript and the t superscripts in this expression.  Next define

θq* ≡ limp→0 θq(p)

       = limp→0 [π0(p) + . . + πq(p)]Z(p) – limp→0 [π0(p) + . . + πq-1(p)]Z(p)

= {limp→0 exp[(1/p)ln(π0(p) + . . + πq(p))]}λnρ

– {limp→0 exp[(1/p)ln(π0(p) + . . + πq-1(p))]}λnρ
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We have limp→0 πq(p) = 1 for q = qr
t and limp→0 πq(p) = 0 for q ≠ qr

t because at least one

mutation must occur whenever the number of correct digits differs from qr
t.  This implies

that for each expression of the form limp→0 exp[(1/p)ln(π0(p) + . . + πq(p))], there are two

possible cases:

(a) If q < qr
t then limp→0 exp[(1/p)ln(π0(p) + . . + πq(p))] = e-∞ = 0 and hence θq* = 0.

(b) If q ≥ qr
t then limp→0 (π0(p) + . . + πq(p)) = 1 and hence limp→0 exp[(1/p)ln(π0(p) +

. . πq(p))] = limp→0  exp[π0′(p) + . . + πq′(p)].

Now consider the derivatives πq′(p) in case (b) above.  The probabilities πq(p) are

polynomials in p, and all outcomes involving two or more mutations correspond to terms

that are quadratic or higher.  After taking derivatives, all such terms vanish in the limit.  Thus

we can confine attention to outcomes that involve either no mutations or just one mutation.

This implies that only q = qr
t - 1, q = qr

t, and q = qr
t + 1 are relevant.

(i) q = qr
t - 1.  This outcome can be obtained in qr

t ways by having one mutation at a

correct locus and no mutations elsewhere, which has the probability qr
tp(1-p)Q-1.  All

other ways to obtain the same result involve three or more mutations.  This gives

limp→0 πq′(p) = qr
t so limp→0 exp[π0′(p) + . . + πq′(p)] = exp(qr

t).

(ii) q = qr
t.  This outcome can be obtained in one way with no mutations, which has

probability (1-p)Q.  All other ways to obtain the same result involve two or more

mutations.  This gives limp→0 πq′(p) = -Q so limp→0 exp[π0′(p) + . . + πq′(p)] =

exp[-(Q-qr
t)].

(iii) q = qr
t + 1.  This outcome can be obtained in Q-qr

t ways by having one mutation at

an incorrect locus and no mutations elsewhere, with probability (Q-qt)p(1-p)Q-1.  All

other ways to obtain the same result involve three or more mutations.  This gives

limp→0  πq′(p) = Q-qr
t and thus limp→0 exp[π0′(p) + . . + πq′(p)] = e0 = 1.

Recall from (a) above that θq* = 0 when q < qr
t.  To solve for θq* when q = qr

t we first

observe that the second limit in the last line for θq* is zero due to (a).  Substituting from (b)

and (ii) in the first limit in the last line for θq* gives θq* = exp[-λnr
tρt(Q-qt)].
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To solve for θq* when q = qr
t + 1 we observe that (b) applies to both limits in the

last line for θq*.  Substituting from (b) gives θq* = 1- exp[-λnr
tρt(Q-qt)].

Finally, we have θq* = 0 when q ≥ qr
t + 2 because (b) applies to both limits in the

last line for θq* and both of these limits equal unity.  The latter result follows from (iii) and

the fact that any outcome with q ≥ qr
t + 2 requires two or more mutations.

By construction all of the θq* are conditional on kr
t.  However, the structure of the

proof shows that the only relevant property of kr
t is the number of correct digits qr

t.  Thus

we can write the transition probabilities for qr
t+1 and qr

r as in Proposition 1.

The limiting transition probabilities for strings, limp→0 Pr(kr
t+1 = k  kr

t; p), follow

from the preceding results.  If k has fewer correct digits than qr
t or more than qr

t + 1, it has

probability zero in the limit.  The only way to have qr
t+1 = qr

t in the limit is by having kr
t+1 =

kr
t so this has probability exp[-λnr

tρt(Q-qt)].  There are Q-qr
t ways to obtain qr

t+1 = qr
t + 1

by a single mutation that changes one incorrect digit to a correct one.  Each of these strings

kr
t+1 has probability {1- exp[-λnr

tρt(Q-qt)]}/(Q-qr
t).  This completes the proof.
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Proof of Proposition 2.

Uniqueness follows from the strict concavity of the objective function and continuity

follows from the theorem of the maximum.

(a) Let n′ be optimal for (A, N′) and let n′′ be optimal for (A, N′′).  Suppose that nr′′ ≤

nr′.  The first order conditions for (2) with parameters (A, N′′) imply that all s with

ns′′ > 0 have Asfs′(ns′′) ≥ Arfr′(nr′′).  The fact that nr′′ ≤ nr′ gives Arfr′(nr′′) ≥ Arfr′(nr′).

Finally, the first order conditions for (2) with parameters (A, N′) and nr′ > 0 give

Arfr′(nr′) ≥ Asfs′(ns′) for all s = 1 . . R.  This series of inequalities gives Asfs′(ns′′) ≥

Asfs′(ns′) for all s with ns′′ > 0 and thus implies ns′ ≥ ns′′ for all s such that ns′′ > 0.

Clearly ns′ ≥ ns′′ also holds for all s such that ns′′ = 0.   Summing over resources

gives N′ ≥ N′′, contradicting the assumption N′ < N′′.  This shows that nr′′ > nr′.

(b) Let n′ be optimal for (A′, N) and let n′′ be optimal for (A′′, N).  Suppose nr′′ ≤ nr′.

For all v ≠ r such that nv′′ > 0 we have Av′′fv′(nv′′) ≥ Ar′′fr′(nr′′).  Furthermore,

Ar′′fr′(nr′′) > Ar′fr′(nr′′) ≥ Ar′fr′(nr′) ≥ Av′fv′(nv′) for all v = 1 . . R.  The first inequality

follows from Ar′′ > Ar′, the second from nr′′ ≤ nr′, and the last from nr′ > 0.  The

preceding series of inequalities and Av′′ = Av′ for v ≠ r shows that Av′fv′(nv′′) >

Av′fv′(nv′) for all v ≠ r such that nv′′ > 0 and hence nv′′ < nv′ for all v ≠ r such that

nv′′ > 0.  There must be at least one such v ≠ r since otherwise nr′′ = N > nr′ due to

ns′ > 0, but we have supposed nr′′ ≤ nr′.  Clearly all v ≠ r with nv′′ = 0 have nv′′ ≤ nv′.

Summing over all resources gives N′′ < N′ because there is at least one v ≠ r with

nv′′ < nv′.  This contradicts the fact that N is constant.  Therefore nr′′ > nr′.  Next

suppose ns′′ ≥ ns′.  Consider v ≠ s and v ≠ r.  For all such v, Av′′fv′(nv′′) ≤

As′′fr′(ns′′) ≤ As′′fs′(ns′) = As′fs′(ns′).  Moreover, if nv′ > 0 we have As′fs′(ns′)  =

Av′fv′(nv′).  This and Av′′ = Av′ implies that for any v ≠ s and v ≠ r with nv′ > 0, it

must be true that nv′′ ≥ nv′.  Clearly the same inequality holds when nv′ = 0.  Since
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nr′′ > nr′ and we have supposed ns′′ ≥ ns′, summing over resources gives N′′ > N′.

This contradicts the fact that N is constant.  Therefore ns′′ < ns′.

(c) Fix A > 0.  Choose any N′ ≠ N′′ and µ ∈ (0, 1).  Let n′ be optimal for (A, N′) and

let n′′ be optimal for (A, N′′).  Define nµ = µn′ + (1-µ)n′′ ≥ 0.  This is a feasible

allocation for the total population Nµ = µN′ + (1-µ)N′′.  It follows that H(A, Nµ) ≥

∑ Arfr(nr
µ) = ∑ Arfr[µnr′ + (1-µ)nr′′] > ∑ Ar[µfr(nr′) + (1-µ)fr(nr′′)] = µH(A, N′) +

(1-µ)H(A, N′′).  The strict inequality occurs because due to the strict concavity of fr

we have fr[µnr′ + (1-µ)nr′′] > µfr(nr′) + (1-µ)fr(nr′′) whenever nr′ ≠ nr′′, and the latter

inequality must hold for at least one r because N′ ≠ N′′.  Due to H(A, 0) = 0, the

strict concavity of H implies H(A, µN) > µH(A, N) for all N > 0 and µ ∈ (0, 1).

This yields H(A, µN)/µN > H(A, N)/N for all N > 0 and µ ∈ (0, 1).  Thus y(A, N) ≡

H(A, N)/N is decreasing in N.

(d) Fix A > 0 and consider the (unique) optimal allocation n(A, N).  We first show that

lim N→∞ ns(A, N) = ∞ must hold for some s.  Suppose instead that for every r there is

a finite upper bound nr such that nr(A, N) ≤ nr for all N.  Then for any N > ∑ nr we

have ∑ nr(A, N) < N, which contradicts optimality.  Thus there is some s such that

lim N→∞ ns(A, N) = ∞.  From the assumption that fr′(nr) → 0 as nr → ∞ for r = 1 . . R

we obtain lim N→∞ Asfs′[ns(A, N)] = 0.  Next, define m(A, N) = max {Arfr′[nr(A, N)]}.

There is some N such that N > N implies ns(A, N) > 0.  From the first order

conditions for (2) this implies m(A, N) = Asfs′[ns(A, N)] for all N > N.  Hence lim

N→∞ m(A, N) = 0, which implies lim N→∞ Arfr′[nr(A, N)] = 0 for all r = 1 . . R.  Thus

lim N→∞ nr(A, N) = ∞ for all r = 1 . . R.  From part (c), H(A, N)/N is decreasing in N.

Suppose that this ratio has a lower bound δ > 0.  This implies ∑ {Arfr[nr(A, N)] -

δnr(A, N)} ≥ 0.  However, we have fr(nr)/nr → 0 as nr → ∞ for r = 1 . . R.  This is

obvious if there is a finite upper bound on fr(nr).  If fr(nr) is unbounded then using

fr′(nr) → 0 as nr → ∞ gives the same result.  The facts that lim N→∞ nr(A, N) = ∞ and
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fr(nr)/nr → 0 as nr → ∞ for all r = 1 . . R together imply that there is some

sufficiently large N such that Arfr[nr(A, N)] - δnr(A, N) < 0 for all r = 1 . . R.  This

contradicts the earlier inequality and gives the desired result lim N→∞ H(A, N)/N = 0.

(e) Fix A > 0.  By the envelope theorem H(A, N) is differentiable in N and HN(A, N) is

the Lagrange multiplier for (2).  Since H(A, 0) = 0, lim N→0 H(A, N)/N = lim N→0

HN(A, N).  When N > 0, the first order conditions for (2) give HN(A, N) = max

{Arfr′[nr(A, N)]}.  Because nr(A, N) is continuous in N with nr(A, 0) = 0 for all r, we

have lim N→0 HN(A, N) = max {Arfr′(0)}.
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Proof of Proposition 3.

Sufficiency.  (KS, NS, nS) is a VLRE if (i) kr
S = kr* for all r such that nr

S > 0; (ii) NS =

N[A(a, KS)] is derived from (4); and (iii) nS = n[A(a, KS), NS] is derived from (2).  The

second and third conditions hold by construction.  Condition (i) holds if nr
S = 0 for all r ∉

S.  From the first order conditions for (2), this is true if HN(AS, NS) ≥ Ar(kr
min)fr′(0) for all r

∉ S, which is true from (b) in Proposition 3.  NS > 0 holds if Ar
Sfr′(0) > y* for some r ∈ {1

. . R}, which is true from (a) in Proposition 3.  This shows that (KS, NS, nS) is a non-null

VLRE of type S.  Now suppose (K′, N′, n′) is some other non-null VLRE of type S.  This

implies H(AS, NS)/NS = H(A′, N′)/N′ = y*.  By the construction of AS, we have A′ ≥ AS

where these vectors differ at most for r ∉ S.  By the definition of VLRE, nr′ = 0 for all r ∉

S.  Reducing the productivities of one or more resources that are not in use has no effect on

H(A, N) and therefore H(A′, N′) = H(AS, N′).  This implies H(A′, N′)/N′ = H(AS, N′)/N′ =

y*, which in turn gives N′ = NS.  The uniqueness of the solution in (2) then gives n′ = nS.

Necessity.  Suppose (K′, N′, n′) is a non-null VLRE of type S but (a) in Proposition 3 does

not hold.  The definition of VLRE implies nr′ = 0 for all r ∉ S.  Setting A′ = A(a, K′), we

have max {Ar′fr′(0)} = HN(A′, 0) > H(A′, N′)/N′ > HN(A′, N′) ≥ Ar′fr′(0) for all r ∉ S.  The

equality follows from Proposition 2(e), the two strict inequalities follow from N′ > 0 and

Proposition 2(c), and the weak inequality follows from nr′ = 0 for r ∉ S and the first order

conditions for (2).  This series of results implies that Ar′fr′(0) = HN(A′, 0) for some r ∈ S

because otherwise there is a contradiction.  But H(A′, N′)/N′ = y* from (4) because (K′, N′,

n′) is a non-null VLRE.  Moreover, y* ≥ Ar′fr′(0) because (a) in Proposition 3 does not

hold.  Again this leads to a contradiction.  Therefore if a non-null VLRE of type S exists,

condition (a) in Proposition 3 must hold.

Now suppose (K′, N′, n′) is a non-null VLRE of type S and (a) in Proposition 3

holds, but (b) in Proposition 3 does not.  The definition of VLRE implies nr′ = 0 for all r ∉
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S.  From the first order conditions for (2), this implies HN(A′, N′) ≥ Ar(kr′)fr′(0) for all r ∉

S.  Moreover, Ar(kr′)fr′(0) ≥ Ar(kr
min)fr′(0) for all r ∉ S by the definition of kr

min, and

Ar(kr
min)fr′(0) > HN(AS, NS) holds for some r ∉ S because (b) in Proposition 3 is violated.

This implies HN(A′, N′) > HN(AS, NS).  But this cannot be true because the only possible

difference between A′ and AS is Ar′ > Ar
S for one or more r ∉ S.  Reducing productivity for

a resource with nr(A′, N′) = 0 has no effect on the optimal labor allocation or on the

maximum value in (2).  This implies H(A′, N′)/N′ = H(AS, N′)/N′ = y* and therefore N′ =

NS.  It follows that HN(A′, N′) = HN(AS, NS).  This contradiction shows that if a non-null

VLRE of type S exists, condition (b) in Proposition 3 must hold.
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Proof of Proposition 4.

(a) Consider any sample path {Kt, Nt} for t ≥ 0.  There are finitely many possible

repertoires, so at least one repertoire K′ must be repeated infinitely many times.

Because the sequence of productivity vectors {At} = {A(Kt)} is non-decreasing by

Proposition 1 and conservation of latent strings, it is impossible to return to an

earlier repertoire after departing from it.  Therefore only one repertoire can occur

infinitely many times, and the occurrences of this K′ must be consecutive.  Let T be

the first period in which K′ occurs.  Using N0 > 0 and ρ(y) > 0 for y > 0, (3) implies

NT > 0.  Due to Kt = K′ for all t ≥ T, the condition MPA in section 4 gives {Nt} →

N′.  The result {nt} → n′ follows from the continuity of solutions in (2).

(b) Suppose some terminal array (K′, N′, n′) is not a VLRE.  This implies that n′ =

n[A(K′), N′] has nr′ > 0 for some r with kr′ ≠ kr*.  Define M by HN(A′, M) ≡ max

{argr(kr′)fr′(0) for r such that kr′ ≠ kr*}.  Given the terminal productivities A′, M is

the largest population such that all improvable techniques are latent.  A unique M ∈

[0, ∞) exists because Proposition 2(e) gives HN(A′, 0) = max {argr(kr′)fr′(0) for r = 1

. . R} ≥ max {argr(kr′)fr′(0) for r such that kr′ ≠ kr*}; Proposition 2(d) gives HN(A′,

∞) = 0 < min {argr(kr′)fr′(0) for r such that kr′ ≠ kr*}; and HN(A′, N) is continuous

and decreasing in N.  Since (K′, N′, n′) is not a VLRE, an improvable technique

must be active in n′ and therefore M < N′.

From (a), for each sample path having K′ as the terminal repertoire there is

some T ≥ 0 such that Kt = K′ for all t ≥ T.  Consider any such sample path.  There

are two possibilities: (i) NT ∈ (0, M] or (ii) NT ∈ (M, ∞).  In case (i), Kt = K′ for all

t ≥ T, NT ≤ M < N′, and MPA imply that after finitely many periods we must have

Nτ ∈ (M, ∞).  Setting T = τ if necessary, it therefore suffices to consider (ii).  In this

case, MPA ensures that if NT < N′ then Nt ≥ NT for all t ≥ T, and if N′ ≤ NT then Nt

≥ N′ for all t ≥ T.  Thus M < min {N′, NT} ≤ Nt for all t ≥ T.
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The constancy of A′ for t ≥ T, the scale effect in Proposition 2(a), and the

construction of M ensure that for some r with kr′ ≠ kr* there is a lower bound nr

such that 0 < nr ≤ nr
t for all t ≥ T.  Next, define ρt ≡ Nt+1/Nt as in Proposition 1.

MPA ensures that if NT ≤ N′ then ρt ≥ ρ ≡ 1 for all t ≥ T ′ and if NT > N′ then ρt ≥

ρ ≡ N′/NT > 0.  Using the lower bounds nr and ρ along with kr′ ≠ kr*, Proposition 1

implies that for each t ≥ T the probability that kr stays unchanged cannot exceed

exp(-λρnr) < 1.  Over the unbounded interval t ≥ T, the probability that kr remains

unchanged vanishes.  Therefore Pr(Kt = K′ for t ≥ T | KT = K′, NT) = 0.

Every sample path has a terminal repertoire K′ (which may or may not

generate a VLRE) and the number of repertoires is finite, so we can partition the set

of sample paths starting from (K0, N0) into finitely many sets indexed by K′.  The

probability of a particular terminal repertoire K′ is Prob(K′ is terminal) =

∑ T ∈ {0, 1 . . } ∑     N     ∈ N(K′,T) Pr(KT = K′, NT = N|K0, N0)Pr(Kt = K′ for t ≥ T|KT = K′, NT = N)

where T is the first date on which K′ occurs and N(K′, T) is the set of population

levels that are consistent with a first occurrence of K′ in period T.  For any finite T

there are finitely many possible mutation histories, and each of these histories

determines a unique NT, so N(K′, T) is a finite set.  Moreover, N0 > 0 implies NT > 0

for any finite T from (3).  We have shown that if the terminal array (K′, N′, n′) is not

a VLRE then Pr(Kt = K′ for t ≥ T|KT = K′, NT = N) = 0 for all N > 0 and all T ≥ 0.

Thus the probability that K′ is the terminal repertoire is zero if K′ does not generate

a VLRE.  Since there are finitely many terminal repertoires, the terminal array (K′,

N′, n′) is a VLRE with probability one.

 (c) Suppose 0 < Nt < N[A(Kt)].  From MPA, Proposition 1, the conservation of latent

strings, and the fact that N(A) is non-decreasing we have Nt < Nt+1 < N[A(Kt)] ≤

N[A(Kt+1)].  When 0 < N0 < N[A(K0)], we can repeat the argument to obtain 0 < Nt

< Nt+1 for all t ≥ 0.  When 0 < N0 = N[A(K0)], we have Nt = N[A(K0)] for 0 ≤ t ≤ T
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where T is the first period (if any) at which a mutation occurs for an active resource.

This yields N0 = NT < N[A(KT)].  For t ≥ T, {Nt} is increasing as before.  When N0

> N[A(K0)] ≥ 0, MPA ensures N0 > N1 > N[A(K0)].  If there is a period T ≥ 1 in

which a mutation to an active resource yields NT ≤ N[A(KT)] then {Nt} is non-

decreasing for t ≥ T by the reasoning used above (and increasing if NT < N[A(KT)]

holds).  Otherwise, we have Nt > N[A(Kt)] for all t ≥ 0.  From MPA this implies Nt

> Nt+1 > N[A(Kt)] for all t ≥ 0 and {Nt} is decreasing.
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Proof of Proposition 5.

(a) Let the climate change permanently to a′ at the start of period t = 0 before labor is

allocated.  The repertoire and population (K0, N0) at t = 0 are inherited from the

previous VLRE.  Due to the neutrality of the shock, the optimal labor allocation in

(2) for t = 0 is unaffected (the solution n(A, N) is homogeneous of degree zero in

A).  We use n0 interchangeably for the labor allocation in the original VLRE and the

allocation in period t = 0 after the climate change occurs.  The productivity vector in

period t = 0 is θA0 = θA(a0, K0) = A(θa0, K0) and the corresponding population in

LRE is denoted by N′ = N(θA0).

We will show that for any T ≥ 0, KT = K0 and NT ∈ (N′, N0] implies KT+1 =

K0 and NT+1 ∈ (N′, N0].  This implies that the system converges to a VLRE with K′

= K0 and N′ = N(θA0).

The labor allocation associated with (KT, NT) is nT = n(θA0, NT).  Two

necessary conditions for kr
T+1 ≠ kr

T are (i) kr
T ≠ kr* and (ii) nr

T > 0.  Any r satisfying

(ii) has nr(θA0, NT) > 0 and hence nr(θA0, N0) > 0 from Proposition 2(a) and N0 ≥

NT.  But then nr(A0, N0) > 0 by the homogeneity of n(A, N) in A.  This implies kr
0 =

kr
T = kr* because (K0, N0, n0) is a VLRE for climate a0.  Thus (i) cannot hold.  This

shows that kr
T+1 = kr

T for all r and hence KT+1 = K0.  We also have H(θA0, N′)/N′ =

y* > H(θA0, NT)/NT because NT > N′.  Therefore by MPA, NT+1 ∈ (N′, NT) ⊆ (N′,

N0].  This establishes deterministic convergence to a unique VLRE (K′, N′, n′) such

that (i) K′ = K0 and (ii) N′ = N(θA0) < N0.

Suppose nr
0 = nr(A0, N0) = 0.  If nr′ = nr(θA0, N′)  > 0 then nr(A0, N′)  > 0 by

homogeneity.  Furthermore, nr(A0, N0) > 0 from N′ < N0 and Proposition 2(a),

which is false.  Therefore nr′ = 0.  This shows that the active resources in n′ are a

subset of the active resources in n0.
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Starting from the (non-null) VLRE (K′, N′, n′) associated with climate a′,

suppose in period t = 0 the climate returns permanently to a0 = a′/θ.  We will show

that for any T ≥ 0, KT = K′ and NT ∈ [N′, N0) implies KT+1 = K′ and NT+1 ∈ [N′,

N0).  It follows that the system converges to (K0, N0).

Using KT = K′ = K0, the labor allocation associated with (KT, NT) is nT =

n(A0, NT).  As before, two necessary conditions for kr
T+1 ≠ kr

T are (i) kr
T ≠ kr* and

(ii) nr
T > 0.  Any r satisfying (ii) has nr(A0, NT) > 0 and hence nr(A0, N0) > 0 from N0

> NT and Proposition 2(a).  But every r with nr
0 = nr(A0, N0) > 0 has kr

0 = kr
T = kr*

because (K0, N0, n0) is a VLRE for a0 and KT = K′ = K0.  Thus (i) cannot hold.

This shows that kr
T+1 = kr

T for all r and therefore KT+1 = K′.  We also have H(A0,

N0)/N0 = y* < H(A0, NT)/NT because (K0, N0, n0) is a VLRE for a0 and 0 < NT < N0.

Therefore by MPA, NT+1 ∈ [NT, N0) ⊆ [N′, N0).  This shows deterministic

convergence to the original VLRE (K0, N0, n0).

(b) Suppose the terminal array (K′, N′, n′) is a VLRE as in Proposition 4(b).  From the

fact that (K0, N0, n0) is a VLRE for the climate a0 and H(A, N) is linearly

homogeneous in A, y* = H(A0, N0)/N0 < H(θA0, N0)/N0.  This shows that N0 <

N(θA0).  Using Proposition 4(c), the latter inequality implies {Nt} is increasing and

therefore N0 ≤ Nt < N′ for all t ≥ 0.

Necessity.  Suppose nr[θA0, N(θA0)] = 0 for all r such that kr
0 ≠ kr*.  We will show

that KT = K0 and NT ∈ [N0, N(θA0)) implies KT+1 = K0 and NT+1 ∈ [N0, N(θA0)).

Repeating the argument then yields K′ = K0 and N′ = N(θA0).  Two necessary

conditions for kr
T+1 ≠ kr

T are (i) kr
T ≠ kr* and (ii) nr

T > 0.  From NT < N(θA0) and

Proposition 2(a), (ii) implies nr[θA0, N(θA0)] > 0.  Our initial supposition and KT =

K0 imply that (i) is false.  Thus kr
T+1 = kr

T for all r and KT+1 = KT.   We have H[θA0,

N(θA0)]/N(θA0) = y* < H(θA0, NT)/NT from the definition of N(θA0) and the fact
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that NT < N(θA0).  Therefore by MPA, NT+1 ∈ (NT, N(θA0)) ⊆ [N0, N(θA0)) as

claimed.

Sufficiency.  Suppose nr[θA0, N(θA0)] > 0 for some r such that kr
0 ≠ kr*, but K′ =

K0.  The conditions for VLRE require H(θA0, N′)/N′ = y* so N′ = N(θA0).  The

conditions for VLRE also require nr′ = nr[θA0, N(θA0)] = 0 for all r such that kr′ ≠

kr*.  According to our supposition this is false.  Therefore K′ ≠ K0.

We have already shown that if (*) does not hold then N′ = N(θA0).

Suppose that (*) does hold.  We need to show that N′ > N(θA0).  Define A′ ≡ A(a′,

K′).  Because (K′, N′, n′) is a VLRE for the climate a′ we have H(A′, N′)/N′ = y* =

H[θA0, N(θA0)]/N(θA0).  We cannot have N′ < N(θA0) since then A′ ≥ θA0 gives

y* = H[θA0, N(θA0)]/N(θA0) < H(θA0, N′)/N′ ≤ H(A′, N′)/N′ = y*, which is a

contradiction.  Therefore to show N′ > N(θA0) it suffices to rule out N′ = N(θA0).

Assume N′ = N(θA0) holds.  It follows from H(A′, N′)/N′ = y* = H[θA0,

N(θA0)]/N(θA0) that H(A′, N′) = H[θA0, N(θA0)].  Consider the case n′ ≠ n[θA0,

N(θA0)].  From the uniqueness of solutions in (2) and the fact that both of the labor

allocations involved are feasible, we have H(A′, N′) = ∑ θar
0gr(kr′)fr(nr′) > ∑

θar
0gr(kr′)fr[nr(θA0, N′)] ≥  ∑ θar

0gr(kr
0)fr[nr(θA0, N′)] = H[θA0, N(θA0)].  This

contradicts H(A′, N′) = H[θA0, N(θA0)].   Next consider the case N′ = N(θA0) and

n′ = n[θA0, N(θA0)].  Now H(A′, N′) = H[θA0, N(θA0)] implies that ∑

θar
0gr(kr′)fr(nr′) = ∑ θar

0gr(kr
0)fr(nr′) or ∑ ar

0fr(nr′)[gr(kr′) – gr(kr
0)] = 0 where gr(kr′) ≥

gr(kr
0) for all r.  Because (*) holds with n′ = n[θA0, N(θA0)], there exists some r for

which nr′ = nr[θA0, N(θA0)] > 0 and kr
0 ≠ kr*.  Because (K′, N′, n′) is a VLRE, nr′ >

0 implies kr′ = kr*.  Hence there is at least one r with fr(nr′) > 0 and gr(kr′) > gr(kr
0).

This contradicts ∑ ar
0fr(nr′)[gr(kr′) – gr(kr

0)] = 0.  Therefore (*) implies N′ > N(θA0).

Suppose a0 is permanently restored and (*) does not hold.  We want to

show that starting from (K′, N′, n′) the system converges to (K0, N0, n0).  We have
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already shown that if (*) does not hold then K′ = K0.  The reversion to a0 from θa0

is a neutral negative shock.  Proposition 5(a) shows that the system converges to a

VLRE (K′′, N′′, n′′) such that K′′ = K′ = K0.  The productivity vector for this VLRE

is A′′ = A(a0, K′′) = A0 and the new VLRE must satisfy H(A′′, N′′)/N′′ = H(A0,

N′′)/N′′ = y*.  This implies N′′ = N0.  The uniqueness of the solution in (2) gives

n′′ = n(A0, N0) = n0.

Suppose a0 is permanently restored and (*) does hold.  We want to show

that starting from (K′, N′, n′) the system converges to a VLRE (K′′, N′′, n′′) with K′′

= K′ ≠ K0 and N′ > N′′ ≥ N0.  We have already shown that (*) implies K′ ≠ K0.

Proposition 5(a) shows that the system converges to a VLRE with K′′ = K′ and N′ >

N′′.  Thus it suffices to show N′′ ≥ N0, and to establish conditions under which this

inequality is strict.  First we show that N′′ ≥ N0.  Define A′′ = A(a0, K′′), where A′′

≥ A0 due to Proposition 1.  If N′′ < N0 then y* = H(A′′, N′′)/N′′ > H(A′′, N0)/N0 ≥

H(A0, N0)/N0 = y*.  This contradiction implies N′′ ≥ N0.

Now suppose N′′ = N0 with n′′ ≠ n0.  Because n0 is feasible in the labor

allocation problem for (A′′, N′′) and the solutions in (2) are unique, H(A′′, N′′) = ∑

ar
0gr(kr′′)fr(nr′′) > ∑ ar

0gr(kr′′)fr(nr
0) ≥ ∑ ar

0gr(kr
0)fr(nr

0) = H(A0, N0).  This gives y* =

H(A′′, N′′)/N′′ >  H(A0, N0)/N0 = y*.  This contradiction shows that if N′′ = N0

then n′′ = n0.  We thus have two possibilities: (i) N′′ = N0 and n′′ = n0 or (ii) N′′ >

N0 and n′′ ≠ n0.  In either case, because (K0, N0, n0) is a VLRE we have kr
0 = kr* for

all r with nr
0 > 0.  Proposition 1 implies kr′′ = kr′ = kr* for all r with nr

0 > 0.

(i) If HN(A0, N0) ≥ ar
0gr(kr′′)fr′(0) for all r such that nr

0 = 0 then n0 satisfies the

first order conditions for problem (2) with parameters (A′′, N0) because kr′′ = kr
0 for

all r with nr
0 > 0.  The first order conditions for (2) are sufficient for a solution so

H(A′′, N0)/N0 = H(A0, N0)/N0 = y*.    This shows that (K′′, N0, n0) is a VLRE for
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the climate a0.  But from Proposition 5(a), the VLRE (K′′, N′′, n′′) is unique.

Therefore N′′ = N0 and n′′ = n[A(a0, K′′), N0] = n0.

(ii) If HN(A0, N0) < ar
0gr(kr′′)fr′(0) for some r such that nr

0 = 0 then n0 does not

satisfy the first order conditions for problem (2) with parameters (A′′, N0).  Thus

n[A(a0, K′′), N0] ≠ n0.  Using N′′ ≥ N0 and the uniqueness of solutions in (2), this

gives H(A′′, N′′) ≥ H(A′′, N0) > ∑ ar
0gr(kr′′)fr(nr

0) ≥ ∑ ar
0gr(kr

0)fr(nr
0) = H(A0, N0).

Now suppose N′′ = N0.  This implies y* = H(A′′, N′′)/N′′ =  H(A′′, N0)/N0 > H(A0,

N0)/N0 = y*, which is a contradiction.  Hence N′′ > N0.  If nr′′ = 0 for all r such that

nr
0 = 0, there must be at least one s with 0 < ns

0 < ns′′.  Using kr′′ = kr* for all r with

nr
0 > 0 and the envelope theorem, this gives HN(A′′, N′′) = as

0gs(ks′′)fs′(ns′′) <

as
0gs(ks*)fs′(ns

0) = HN(A0, N0).  But then HN(A′′, N′′) < HN(A0, N0) < ar
0gr(kr′′)fr′(0)

for some r such that nr
0 = 0, which contradicts the optimality of nr′′ = 0 for all r such

that nr
0 = 0.  Therefore nr′′ > 0 for at least one r such that nr

0 = 0.


